A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
Authors
Abstract:
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The pressure equation and convection dominant saturation equation are discretized using the nonconforming Crouziex-Raviart finite element (CR FEM) and the weighed interior penalty discontinuous Galerkin (SWIP) method, respectively. Utilizing the nonconforming finite element method for solving the flow equation made the pressure and velocity values be consistent with respect to the degrees of freedom arrangement at the midpoint of the neighboring element edges. The boundary condition governing the simulation is the Robin type at entrance boundaries, and the time marching discretization for the governing equations is the sequential solution scheme. An H (div) projection using Raviart-Thomas element is implemented to improve the results’ resolution and preserve the continuity of the normal component of the velocity field. At the end of each time step, the non-physical oscillation is omitted using a slope limiter, namely, modified Chavent-Jaffre limiter, in each element. Also, in this study, the developed algorithm is verified using some benchmark problems and the test cases are considered to demonstrate the efficiency of the developed model in capturing the shock front at the interface of fluid phases and discontinuities.
similar resources
A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media
We propose and analyze a combined finite volume–nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual me...
full textA hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media
We present a new method for simulating incompressible immiscible two-phase flow in porous media. The semi-implicit method decouples the wetting phase pressure and saturation equations. The equations are discretized using a hybridizable discontinuous Galerkin (HDG) method. The proposed method is of high order, conserves global/local mass balance, and the number of globally coupled degrees of fre...
full textA discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media
Article history: Received 24 November 2016 Received in revised form 26 June 2017 Accepted 29 September 2017
full textDiscontinuous Galerkin finite element method for shallow two-phase flows
We present a discontinuous Galerkin finite element method for two depth-averaged two-phase flow models. One of these models contains nonconservative products for which we developed a discontinuous Galerkin finite element formulation in Rhebergen et al. (2008) J. Comput. Phys. 227, 1887-1922. The other model is a new depth-averaged two-phase flow model we introduce for shallow two-phase flows th...
full textA Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media
A combined method consisting of the mixed finite element method for flow and the discontinuous Galerkin method for transport is introduced for the coupled system of miscible displacement problem. A “cut-off” operatorM is introduced in the discontinuous Galerkin formular in order to make the combined scheme converge. Optimal error estimates in L(H) for concentration and in L(L) for velocity are ...
full textA fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure
In this paper we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential / capillary potential formulation of the twophase flow system. After discretizing ...
full textMy Resources
Journal title
volume 38 issue 2
pages 1- 22
publication date 2020-02
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023